Multidrug Resistance-Associated Protein–Overexpressing Teniposide-Resistant Human Lymphomas Undergo Apoptosis by a Tubulin-Binding Agent

Ritu Aneja, Min Liu, Clayton Yates, Jinmin Gao, Xin Dong, Binfei Zhou, Surya N. Vangapandu, Jun Zhou, and Harish C. Joshi

1Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia; 2Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China; and 3Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, Alabama

Abstract

Several DNA- and microtubule-binding agents are used to manage hematologic malignancies in the clinic. However, drug resistance has been a challenge, perhaps due to a few surviving cancer stem cells. Toxicity is another major impediment to successful chemotherapy, leading to an impoverished quality of life. Here, we show that a semisynthetic nontoxic tubulin-binding agent, 9-bromonoscapine (EM011), effectively inhibits growth and regresses multidrug resistance-associated protein (MRP)-overexpressing teniposide-resistant T-cell lymphoma xenografts and prolongs longevity. As expected, teniposide treatment failed to regress teniposide-resistant xenografts, rather, treated mice suffered tremendous body weight loss. Mechanistically, EM011 displays significant antiproliferative activity, perturbs cell cycle progression by arresting mitosis, and induces apoptosis in teniposide-resistant lymphoblastoid T cells both in vitro and in vivo. EM011-induced apoptosis has a mitochondrial-mediated component, which was attenuated by pretreatment with cyclosporin A. We also observed alterations of apoptosis-regulatory molecules such as inactivation of Bcl2, translocation of BAX to the mitochondrial membrane, cytochrome c release, and activation of downstream apoptotic signaling. EM011 caused DNA degradation as evident by terminal deoxynucleotidyl transferase–mediated dUTP-biotin end labeling staining of the increased concentration of 3′-DNA ends. Furthermore, the apoptotic induction was caspase dependent as shown by cleavage of the caspase substrate, poly(ADP)ribose polymerase. In addition, EM011 treatment caused a suppression of natural survival pathways such as the phosphatidylinositol-3′-kinase/Akt signaling. These preclinical findings suggest that EM011 is an excellent candidate for clinical evaluation. [Cancer Res 2008;68(5):1495–503]

Introduction

It is estimated that in the United States, every 10 minutes, a patient dies from blood cancer. Among the currently available treatment strategies (chemotherapy, radiation therapy, and bone marrow transplantation), chemotherapy, by far, is the largest subset of treatment options; and various classes of drugs including epipodophyllotoxins (etoposide and teniposide) and Vinca alkaloids (vinblastine and vincristine) are used to manage hematologic malignancies (1–3). Although the initial response to these drugs is impressive, their potential is limited by the development of multidrug resistance (4, 5), primarily mediated by overexpression of transmembrane efflux pumps [for example, the Mr, 170,000 dalton P-glycoprotein (pgp) and the multidrug resistance-associated protein (MRP)] that reduce intracellular drug concentrations to suboptimal levels, thus, hindering clinical applicability (6, 7). Another major challenge is toxicity of currently available drug regimens that includes gastrointestinal toxicity, myelosuppression, immunosuppression, neurotoxicity, and alopecia (8, 9). Furthermore, because most of these drugs are administered i.v., multiple infections and frequent hospital visits cannot be avoided (10, 11). Thus, there is an urgent need to develop novel drugs that are efficacious, well-tolerated, nontoxic, orally available, can overcome various modes of resistance to conventional chemotherapeutics, and display better pharmacologic profiles.

Our laboratory has discovered a previously unknown tubulin-binding anticancer property (12–18) of a natural, nontoxic, orally available compound, noscapine, which is widely used as a cough suppressant in many countries including Western Europe, South America, and Asia. After our work, noscapine is already in phase I/II clinical trials for Non-Hodgkin’s Lymphoma or Chronic Lymphocytic Leukemia refractory to chemotherapy. Our continued efforts to chemically synthesize novel noscapinoids based on modifications of the parent noscapine and to evaluate their biological activities for further drug development led to the identification of 9-bromonoscapine (EM011), a significantly more potent tubulin-binding anticancer agent than noscapine (19, 20), which preserves the nontoxic attributes of noscapine. Although epipodophyllotoxins, such as teniposide and etoposide, are widely used to manage hematologic malignancies, prolonged teniposide therapy results in the development of drug resistance (21). Our laboratory has shown that EM011 regresses pgp-overexpressing human lymphoma xenografts implanted in nude mice (22). We were thus inquisitive to examine if tumors that exhibit drug-resistant phenotype due to other mechanisms, such as MRP overexpression (as in teniposide-resistant lymphomas), respond to EM011 therapy. This also offered us an opportunity to investigate if EM011 is efficacious in tumors that have become resistant to other nontubulin-binding conventional agents, such as teniposide, actively used for lymphoma management. Our present in vitro findings suggest that EM011 shows significant antiproliferative and apoptotic activity that was preceded by a potent G2-M arrest in teniposide-resistant (CEM/VM-1-5) human T-lymphoma cells. Our in vivo data show the effectiveness of oral EM011 therapy to regress
teniposide-resistant lymphoma xenografts implanted in athymic nude mice. Importantly, unlike teniposide, EM011 is unique in being nontoxic to tissues with frequently dividing cells such as the gut and spleen. We therefore believe that EM011 is an ideal chemotherapeutic agent that merits a thorough clinical evaluation.

Materials and Methods

Reagents and cell culture. EM011 was prepared as described previously (19). Primary antibodies against human proteins [cytochrome c, caspase-3, poly(ADP-ribose) polymerase (PARP), phosphorylated Akt (p-Akt), Akt, phosphorylated BubR1, glyceraldehyde-3-phosphate dehydrogenase, and Bim] were from Cell Signaling. The human β-actin antibody was from Santa Cruz. All secondary antibodies were from Jackson ImmunoResearch. Monoclonal antibody for α-tubulin and cyclosporin A was from Sigma. Cell culture reagents were from Mediatech, Cellgro. CEM, a human lymphoblastoid line and its drug-resistant variant, CEM/VM-1-5, were grown in RPMI 1640 supplemented with 10% fetal bovine serum (Invitrogen) and 1% penicillin/streptomycin. Adenoviruses encoding β-galactosidase, dominant-negative BubR1, and dominant-negative Bim were prepared and amplified in low-passage human embryonic kidney 293 cells as described previously (23, 24).

![Figure 1](image_url). EM011 inhibits cell proliferation, arrests mitosis by activation of the spindle checkpoint, and induces apoptosis in teniposide-resistant human lymphoma cells. Ai, a plot of percent cell survival versus EM011 concentrations used for the determination of IC50 value (drug concentration needed to prevent cell proliferation by 50%). Aii, the cell cycle profile as a function of time of treatment in a three-dimensional disposition in CEM/VM-1-5 cells, as determined by FACS analyses. x-axis, DNA content of the cells; y-axis, number of cells detected for a given DNA content; z-axis, time of treatment. 2N, cells residing in the G0-G1 phase of the cell cycle; 4N, cells in the G2 phase or in mitosis; 8N or 16N, polyploid populations. Aiii, the percentage of G2-M and sub-G1 cells (indicative of degraded DNA) as a function of time of treatment (*, P < 0.05). Bii, impairment of the spindle checkpoint by dominant-negative (DN) BubR1 adenoviruses inhibits the activity of EM011 to arrest mitosis. β-galactosidase adenoviruses were used as control. Biii, confocal micrographs of vehicle-treated cells show intricate microtubule arrays (left) and mitoses (top left, inset). Ten micromoles of EM011 treatment completely changes the morphology by fragmentation of condensed chromatin in CEM/VM-1-5 cells (right). Images were obtained using a 63× objective with a numerical aperture of 1.4. C, CEM/VM-1-5 cells show extensive apoptosis indicated by a flow-cytometry–based TUNEL assay. Apoptotic cells were determined by incorporation of BrdUrd at the 3′-OH ends of the fragmented DNA as measured by anti-BrdUrd Alexa Fluor 488 fluorescence (y-axis). Data shown are from a representative experiment of three experiments performed. Cii, the quantitation of apoptotic cells indicated by the number of Alexa Fluor 488–positive cells of the total gated cells (*, P < 0.05).
Table 1. Effect of EM011 on cell cycle progression of CEM/VM-1-5 cells

<table>
<thead>
<tr>
<th>Cell cycle variables, %</th>
<th>CEM/VM-1-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 h</td>
<td>12 h</td>
</tr>
<tr>
<td>G2-M</td>
<td>33.0 ± 3.6</td>
</tr>
<tr>
<td>Sub-G1</td>
<td>10.8 ± 0.5</td>
</tr>
</tbody>
</table>

NOTE: Values shown are mean ± SE. *P < 0.05.

Growth inhibition 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt assay. Cells at a density of 5,000 cells/mL per well in a 96-well format were exposed to various EM011 concentrations for 48 h, and cell proliferation was measured colorimetrically by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt assay, using the CellTiter 96 AQueous One Solution Reagent (Promega).

Analysis of the mitochondrial transmembrane potential. The flow cytometric evaluation of the cell cycle status was performed as described previously (22). Briefly, 10 µmol/L EM011-treated cells were fixed in 70% ethanol, stained with propidium iodide and RNase A, followed by analyses on a FACScalibur flow cytometer (Becton Dickinson). Immunofluorescence confocal microscopy was performed as previously described (22).

Preparation of microtubule and supernatant fractions of cell extracts. The microtubule and supernatant fractions of cell extracts were prepared as described previously (23). Briefly, cells were treated with 10 µmol/L EM011 for the noted hours, washed, and soluble proteins were then extracted under conditions that prevent microtubule depolymerization [0.1% Triton X-100, 0.1 mol/L MES (pH 6.75), 0.1 mol/L MgSO4, and 2 mmol/L EGTA] with protease inhibitor cocktail (Sigma), frozen and thawed thrice, and spun at 2,000 × g for 5 min; the supernatant was further centrifuged at 60,000 × g for 30 min at 4°C. The supernatant was analyzed for cytochrome c content by immunoblotting. β-actin was used as a loading control. All Western blot experiments were repeated at least twice with similar results.

Preparation of microtubule and supernatant fractions of cell extracts. The microtubule and supernatant fractions of cell extracts were prepared as described previously (23). Briefly, cells were treated with 10 µmol/L EM011 for the noted hours, washed, and soluble proteins were then extracted under conditions that prevent microtubule depolymerization [0.1% Triton X-100, 0.1 mol/L MES (pH 6.75), 1 mmol/L MgSO4, 2 mmol/L EGTA, and 4 mol/L glycerol]. The remaining microtubule fraction was dissolved in 0.5% SDS in 25 mmol/L Tris (pH 6.8). Total protein concentration was then determined in each fraction, and equivalent amounts for each treatment group were loaded on the gel.

Determination of caspase-3 activity and terminal deoxynucleotidyltransferase–mediated dUTP nick-end labeling assay for apoptosis. Caspase-3 activity was measured using the CaspaseGlo 3/7 Assay System kit (Promega Corporation) as described previously (22). DNA strand breaks were identified by using the terminal deoxynucleotidyl-transferase–mediated dUTP nick-end labeling (TUNEL) assay as previously described (22). Confocal micrographs were also obtained for the TUNEL-stained cells using a ×63 objective.

Animals and implantation of cancer cells. Eight- to ten-week-old female BALB/c athymic (nu/nu) nude mice (Harlan-Sprague Labs) were housed in the Emory University Animal Care Facility and were injected s.c. with 106 CEM/VM-1-5 cells per mouse. Treatment was initiated 7 to 10 days later when tumors were palpable and measurable (~100 mm3). In control vehicle-treated groups of each experiment, the rapidly growing lymphoma tumors required that animals be euthanized when tumor volumes were ≥4,000 mm3 or became ulcerated and the mice showed morbidity [Institutional Animal Care and Use Committee (IACUC) guidelines of Emory University]. This served as an end point for these experiments. For survival studies, the treated groups were observed for 120 days before euthanasia.

Drug treatment. Tumor-bearing mice were randomly grouped (eight mice per group). One group of mice were given EM011 (300 mg/kg) in deionized water (pH 4.0) by daily gavage. Untreated mice received equal volumes of deionized water (pH 4.0) only. Another group of mice were treated with 20 mg/kg teniposide (three a week) i.v., and untreated control animals received the vehicle solution i.v. Body weight was monitored every consecutive day.

Histopathologic and immunohistochemical analyses. At the end point of control and treatment groups (38 and 120 days, respectively), spleen, small intestines, liver, and regressed tumors were formalin fixed, paraffin embedded; and 5-µm sections were stained with H&E. TUNEL staining of tumor tissue sections was performed as previously described (22). Activated caspase-3 and Ki67 were detected by immunostaining tumor sections using specific monoclonal antibodies (DAKO) followed by HRP-coupled anti-mouse IgG staining. Cleaved PARP and phospho-H3 were detected by immunostaining using a specific monoclonal antibody (Cell Signaling) followed by HRP-coupled anti-rabbit IgG staining. Counter staining was done using hematoxylin.

Statistical analysis. The mean and SE were calculated for all quantitative experiments using Microsoft Excel software. The Student’s t test was used to determine statistically significant differences between groups. *P* values of <0.05 were considered statistically significant.

Results and Discussion

EM011 Inhibits Cell Proliferation and Arrests Teniposide-Resistant Human Lymphoma Cells at Mitosis by Activation of the Spindle Checkpoint

The teniposide-resistant T-lymphoma cells, CEM/VM-1-5, show profound resistance to teniposide (~400-fold), owing to MRP overexpression, compared with parental CEM cells (25). To examine whether these cells respond to EM011, we first evaluated...
the effect of EM011 on cellular proliferation. We found that the IC_{50} of EM011 for these cells was 4.78 μmol/L (Fig. 1Ai). Because EM011 is a tubulin-binding agent that blocks mitosis (22, 26), our next aim was to follow the cell cycle progression of CEM/VM-1-5 cells upon drug treatment over time. EM011 treatment resulted in a time-dependent accumulation of cells in the G2-M phase as revealed by an increasing population of cells with 4N DNA with concomitant losses from G0-G1 phases (Table 1). Figure 1Aii displays the three-dimensional profile of cell cycle progression versus time of treatment. Our results show that the G2-M arrest maximized (≈ 61%) at 12 h of treatment (Fig. 1Aii). After this, we observed a disappearance of the G2-M population and emergence of a characteristic hypodiploid (<2N DNA) sub-G1 peak, indicating apoptotic cells (Fig. 1Aii and Aiii). This apoptotic population peaked at 72 h (≈ 86%; Fig. 1Aiii) posttreatment. Together, these in vitro findings strongly indicate that EM011-treated cells arrest in the G2-M phase before commencement of cell death.

We then investigated the molecular mechanisms underlying EM011-induced G2-M arrest to understand its antiproliferative activity. Microtubule-binding agents such as paclitaxel and nocodazole are known to block cell cycle progression at mitosis by activation of the spindle checkpoint, a cellular surveillance mechanism that ensures accurate chromosome segregation (27). To examine whether EM011 arrests mitosis by triggering the spindle checkpoint, we analyzed the phosphorylation of BubR1, a component of the spindle checkpoint pathway that is phosphorylated during spindle checkpoint activation (28). As shown in Fig. 1Bi, EM011 treatment rapidly increased BubR1 phosphorylation level, indicating activation of spindle checkpoint. Importantly, impairment of the spindle checkpoint by dominant-negative BubR1 adenoviruses remarkably inhibited EM011-induced mitotic arrest (Fig. 1Bii). These data suggest a critical role for spindle checkpoint activation in mediating the early antiproliferative activity of EM011.

EM011 Triggers Apoptosis in Teniposide-Resistant Lymphoma Cells

Our next goal was to examine if EM011-induced cell death was due to apoptosis. Because apoptosis can be detected by characteristic changes in cellular morphology such as the disruption of cytoskeleton, membrane blebbing, hypercondensation and fragmentation of chromatins, and appearance of apoptotic bodies, we first microscopically visualized cells treated with EM011 for 72 h and compared them with vehicle-treated controls. Cells were stained using a α-tubulin–specific antibody (green) and a DNA-binding dye (red). The vehicle-treated cells showed intact normal radial microtubule arrays [Fig. 1Bi, left; inset, (top left)] shows a normal mitotic cell], whereas drug-treated cells showed perturbed microtubule arrays and fragmented DNA pieces (Fig. 1Bi, right). We also quantified the increase in concentration of 3-DNA ends due to DNA fragmentation upon EM011 treatment using a flow cytometry protocol.

Figure 2. EM011-induced apoptosis has a mitochondrial component. A, EM011 treatment causes dissipation of mitochondrial transmembrane potential. Cells were treated with EM011 for 0, 24, 48 and 72 h followed by incubation with 50 nmol/L of DiOC6(3) and examined by flow cytometric analysis. x-axis, DiOC6(3) fluorescence intensity; y-axis, number of cells. Results are representative of three experiments performed. B, cyclosporin A pretreatment attenuates EM011-induced apoptosis. Bl, cells were pretreated with cyclosporin A for 3 h before subject to EM011 treatment for 48 h, and the apoptotic sub-G1 population was quantified flow cytometrically. Cell cycle profile of cells treated with DMSO (control), 10 μmol/L cyclosporin A, 10 μmol/L EM011, and cyclosporin A+EM011, for 48 h. Bii, quantification of apoptotic cells (sub-G1 population) upon these various treatments (*, \(P < 0.05 \)). C, cyclosporin A pretreatment before EM011 exposure causes attenuations in the drop of mitochondrial transmembrane potential. Quantitation of number of depolarized cells upon various treatments. The decrease in the number of depolarized cells upon EM011/cyclosporin A cotreatment is significant compared with the number of depolarized cells upon EM011 treatment alone (*, \(P < 0.05 \)). D, EM011 treatment causes Bim release from microtubules. Di, microtubule (M) and supernatant (S) fractions, respectively, of the cell extracts. Diil, dominant-negative (DN) Bim adenoviruses inhibit EM011-induced apoptosis. β-galactosidase adenoviruses were used as control.
EM011-Induced Apoptosis Has Mitochondrial Contributions

Loss of mitochondrial transmembrane potential. We next sought to investigate the mechanism of EM011-induced apoptosis. Among the various apoptotic pathways recruited by cells for their own demise, one major mechanism involves loss of mitochondrial membrane integrity and transmembrane potential (i.e., loss of $\Delta \Psi_m$; ref. 29). This collapse of $\Delta \Psi_m$ is associated with inactivation of the antiapoptotic molecule Bcl2 and recruitment of BAX onto the outer mitochondrial membrane that results in uncoupling of the respiratory chain and efflux of small proapoptotic factors, eventually leading to activation of key executioner caspases, caspase-3/7 (30, 31). Because biochemical events, such as release of cytochrome c from mitochondria into the cytosol, caspase activation, and PARP cleavage, occur during the mitochondria-mediated apoptotic cell death (30, 31), we asked whether EM011-induced cell death was also accompanied by these biochemical events. Interestingly, we found a substantial time-dependent reduction in cellular uptake of fluorochrome DiOC6(3), indicating a loss of $\Delta \Psi_m$ when CEM/VM-1-5 cells were treated with 10 μmol/L EM011 (Fig. 2A). The percentage of depolarized cells increased as a function of time reaching a maximum of ~62% at 72 h (Fig. 2A). Although we can clearly see significant beginnings (~45%) of loss of $\Delta \Psi_m$ at 48 h, completely and directly mitochondria-dependent apoptotic processes are kinetically much faster (32). These apoptotic processes (e.g., those induced by rotenone and atractyloside, mitochondrial respiratory chain inhibitors) are very rapid (15–20 min; ref. 32). However, this is contrary to what we observed in our studies with EM011 treatment, thus, pointing to additional or indirect effects of EM011 on the intrinsic mitochondrial pathway that were investigated next.

To address the extent of contribution of the mitochondrial pathway toward EM011-induced apoptosis, we used cyclosporin A, a mitochondrial permeability transition pore inhibitor. Our results show that pretreatment of cells with cyclosporin A for 3 h before EM011 treatment for 48 h resulted in ~39% sub-G1 population compared with ~55% upon EM011 treatment alone (Fig. 2Bii and Biii). Our experiments to study the drop in $\Delta \Psi_m$ correlated with our flow cytometry data, in that we observed a diminution of number of cells with depolarized mitochondria when cyclosporin A was given 3 h before EM011 treatment compared with when EM011 was given alone (Fig. 2C). This is clearly indicative of the protective effect of cyclosporin A. These results suggest that there is a mitochondrial component to the total apoptotic response of EM011, although a partial one. Because mitochondria and microtubules are intimately linked to each other within cells (33), we next wanted to better understand the mechanism of how the mitochondrial pathway mediates EM011-induced apoptosis.

Bim release from microtubules. Bim, a protein interacting with microtubules, has been suggested as a sensor of microtubule integrity. Many microtubule-binding agents have been reported to induce Bim dissociation from microtubules, which then leads to apoptosis by affecting on mitochondrial events (34, 35). To test whether EM011 uses a similar mechanism to transduce signals from its effect on microtubules to mitochondria-dependent apoptosis, we examined the level of Bim in microtubule and supernatant fractions in cells. As shown in Fig. 2Dii, Bim was entirely in the microtubule fraction in vehicle-treated cells, whereas a significant portion of Bim was detected in the supernatant fraction in EM011-treated cells, indicating that Bim dissociated from microtubules upon EM011 treatment. Moreover, dominant-negative Bim adenoviruses could dramatically prevent EM011 to induce apoptosis (Fig. 2Diii). These results thus suggest that Bim is crucial for EM011 to induce apoptosis through the mitochondrial pathway.

Increase in BAX/Bcl2 ratio and release of cytochrome c into the cytosol. One of the main regulatory steps of apoptotic cell...
death is controlled by the ratio of antiapoptotic and proapoptotic members of the Bcl2 family of proteins, which determines the susceptibility to apoptosis. Our results showed that EM011 treatment increases BAX levels in a time-dependent manner, whereas Bcl2 levels were decreased, which led to an overall increase in the proapoptotic/antiapoptotic BAX/Bcl2 ratio as a function of time of treatment (Fig. 3A). The cytochrome c release was clearly detectable at 48 h and peaked at 72 h of drug treatment in the cytosolic fraction (Fig. 3A).

Activation of executioner caspase, caspase-3, and cleavage of PARP. Our next aim was to examine the involvement of caspases that are activated upon cytochrome c release and play a major role in cleaving a variety of substrates. Because caspase-3 activation is considered as a hallmark of the apoptotic process, we monitored the active form of the cysteine protease using a small conserved modified peptide substrate that becomes luminogenic upon cleavage. As shown in Fig. 3B, EM011 stimulated a time-dependent increase of caspase-3 activity in CEM/VM-1-5 cells, and treatment of cells with a specific inhibitor of caspase-3 significantly blocked EM011-induced apoptotic cell death (data not shown). Our immunoblots also showed a time-dependent increase in the expression levels of activated caspase-3, suggesting that EM011-induced cell death is caspase-3 dependent (Fig. 3A). Once caspase-3 is activated, a number of cellular proteins are cleaved, including the PARP (36). Our results showed a time-dependent increase in cleaved PARP levels, a downstream substrate of the caspase cascade, and a reliable marker of apoptosis (Fig. 3A).

EM011 Treatment Causes Akt Dephosphorylation
One of the characteristics of cancer cells is their ability to evade programmed cell death through the activation of phosphatidylinositol 3-kinase (PI3K)/Akt pathway (37, 38). PI3K/Akt kinase activities have thus been shown to be elevated in primary tumors and cancer cell lines due to gene amplification, protein overexpression, or mutations of tumor suppressor genes (38). Activated Akt phosphorylates and inhibits proapoptotic proteins, including Bad, caspase-9, and forkhead transcription factors (39–42), thereby inhibiting apoptosis. Because PI3K/Akt constitutes an important cell survival pathway governing the apoptotic response, we next investigated the effect of EM011 on this pathway in a time course experiment. As the activity of Akt is regulated by phosphorylation, we examined the level of p-Akt Ser473 in CEM/VM-1-5 cells treated with EM011 at the noted time points (Fig. 3C). Our results showed a time-dependent decrease of p-Akt Ser473, although total Akt protein levels remained unaffected (Fig. 3C). Because inhibition of PI3K/Akt pathway dramatically induces apoptosis in many cancer cell types, we investigated whether blocking the PI3K/Akt pathway altered the sensitivity of teniposide-resistant cells to EM011-induced apoptosis. Interestingly, our results showed that cotreatment of EM011 with 20 μmol/L LY294002, an inhibitor of PI3K, for 48 h, augmented EM011-induced apoptosis in CEM/VM-1-5 cells (Fig. 3D). In contrast, cotreatment with lower doses of the inhibitor (1 and 5 μmol/L) inhibited Akt phosphorylation; however, this did not result in significant differences in apoptotic cell death compared with EM011 alone, as indicated by percent sub-G1 apoptotic population measured by fluorescence-activated cell sorting analysis (Fig. 3D). Because high dosages of LY294002 are proapoptotic and PI3K-independent in other cancer cell lines (43), it is likely that augmentation of EM011-induced apoptosis at 20 μmol/L LY294002 may be due to an interaction between LY294002 and EM011, which is not PI3K-dependent. Nonetheless, these experiments suggested that EM011 treatment causes suppression of the natural cell survival pathway. However, it is unlikely that inhibition of the PI3K/Akt pathway by EM011 plays a major role in the induction of apoptosis in these lymphoma cells.

Figure 4. Daily oral treatment with 300 mg/kg body weight of EM011 significantly regresses teniposide-resistant T-cell lymphoma xenografts compared with matched controls. However, teniposide-resistant tumors fail to respond to teniposide therapy (20 mg/kg body weight administered intravenously twice a week). A, a progression profile of tumor growth kinetics in EM011- and teniposide-treated animals compared with both orally and intravenously vehicle-treated matched controls, respectively. On day 38, control vehicle-treated mice were euthanized because of overgrown tumors, in compliance with vehicle-treated matched controls, respectively. Onday 38, control vehicle-treated and teniposide-treated animals compared with both orally and intravenously

\textbf{Cancer Research}
Oral EM011 Treatment Achieves Significant Tumor Volume Reduction of Teniposide-Resistant Xenografts in Athymic Nude Mice

Our laboratory has recently shown that EM011 effectively inhibits the growth of hormone-refractory breast tumors (26) and pgp-overexpressing vincristine-resistant lymphomas implanted in nude mice (22). It was intriguing whether the anticancer effects of EM011 were restricted to tumors that are resistant due to overexpression of pgp drug efflux pumps or were applicable to other drug-resistant mechanisms such as overexpression of MRP. We also asked if tumors that are resistant to other widely used lymphoma drugs, such as teniposide, responded to EM011 therapy. Thus, to investigate the generality of the effectiveness of EM011, we evaluated its potential in vivo antitumor effects on teniposide-resistant T-cell lymphoma xenografts implanted in athymic nude mice. CEM/VM1-5 cells were injected s.c. in nude mice, and 7 to 10 days after tumor implantation, when well-established xenografts were palpable with a tumor size of ~100 mm³, mice were randomized into vehicle-control and treatment groups of eight animals each. The treatment groups received individually therapeutically dosages of EM011 (300 mg/kg orally, daily) and teniposide (20 mg/kg i.v., thrice a week). Because teniposide is clinically effective intravenously (unlike EM011, which is orally available), we included matched control groups receiving the vehicle solution orally as well as i.v. in our study. Tumor volumes were measured every consecutive day using vernier calipers. Mice were euthanized when tumors ulcerated or showed extreme morbid conditions, according to the IACUC regulations of Emory University. In vehicle-treated (both orally and i.v.) control animals, the tumors showed unrestricted progression (Fig. 4A). In clear contrast, oral EM011 treatment showed a time-dependent regression of tumor burden (Fig. 4A). A reduction in tumor burden by ~63% was observable at 38 days of oral administration. The difference between the mean final tumor volumes in animals receiving EM011 and those receiving vehicle solution orally was statistically significant (P < 0.05). All animals in the control group had to be euthanized by day 38 postinoculation due to tumor overburden, in compliance with the IACUC guidelines. Another treatment group examined the effect of i.v. teniposide administration on tumor volumes compared with their matched controls. As expected for teniposide-resistant xenografts, mice did not show any significant reduction in tumor volume upon 20 mg/kg i.v. teniposide treatment thrice a week compared with control animals (3,388 ± 400 mm³ and 3,212 ± 289 cm³, average tumor volumes ± SE for vehicle- and teniposide-treated groups, respectively at day 38; Fig. 4A). No statistical differences were observed between tumor volumes in animals receiving teniposide or matched controls receiving the vehicle solution i.v. To assess the overall health and well-being of animals during drug treatment, we measured their body weight every consecutive day. As shown in Fig. 4B, mice in EM011 treatment group maintained normal weight gain and showed no signs of discomfort during the treatment regimen. Thus, EM011 treatment at a dose level of 300 mg/kg was well-tolerated and did not show any obvious adverse effect on the general health of treated mice. However, mice in the teniposide-treated group suffered significant body weight loss associated with morbidity (Fig. 4B). We next determined the longevity of surviving mice by monitoring them for general well-being for 120 days. Kaplan-Meier
analysis revealed a significantly increased survival time with 87.5% animals treated with EM011 surviving until day 120 (P < 0.05; Fig. 4C). This was a remarkable prolongation of survival compared with controls where the median survival time was only 31 days (Fig. 4C). The teniposide-treated animals did not survive beyond 40 days (Fig. 4C).

Our next question was to examine if tumor reduction upon EM011 therapy was also due to inhibition of cellular proliferation, mitotic arrest, and induction of apoptosis. Thus, to examine if the in vivo results were in congruence with in vitro data, we euthanized a subset of mice treated with EM011 orally for 22 days (when significant regression of tumor xenografts was observable) along with matched controls receiving the vehicle solution orally. The tumor tissue was excised followed by immunostaining of histologic sections for proliferation markers, such as the phosphorylated histone H3 and Ki67 antigen. The phospho-H3 antibody recognizes histone H3 after its phosphorylation on Ser10 upon chromosome condensation during prophase (44). A pronounced staining of phospho-H3 in control sections (Fig. 5A, top left) depicted rapidly proliferating cells, whereas a diminished staining was observed in regressed tumor sections from EM011-treated mice (Fig. 5A, top right). Our data further showed that immunohistochemical staining with MIB-1, a monoclonal antibody against Ki67, resulted in a widespread expression of MIB-1-positive cells in control sections (Fig. 5A, middle left) reflecting aggressively proliferating cells, whereas only a few positive cells were visible in tumor sections derived from EM011-treated mice (Fig. 5A, middle right). These results suggested that EM011 inhibits in vivo cellular proliferation. We next asked if EM011 displayed similar antimitotic activity in vivo as well. Towards this goal, we H&E stained 5-μm tumor sections at day 22 of treatment. Circular mitotic figures (Fig. 5A, bottom right, white arrowheads) were clearly visible in the remaining regressed tumors excised from animals undergoing EM011 treatment but were absent in tumor tissue from vehicle-treated control animals (Fig. 5A, bottom left).

Our in vitro data showed that EM011 induced extensive apoptosis in teniposide-resistant cells. To draw parallel, we microscopically examined TUNEL-stained tumor sections from both vehicle-treated control and EM011-treated groups at 38 days (end point of control vehicle-treated animals). Consistent with our in vitro results from the TUNEL assay, we observed numerous TUNEL-positive cells (Fig. 5B, top right) in the regressed tumor sections of EM011-treated animals. We moved on to confirm if our in vitro findings indicating caspase-3 activation and PARP cleavage correlated with our in vivo results. Consistent with our in vitro data, we observed immunohistochemically a widespread expression of activated caspase-3 (Fig. 5B, middle right) and cleaved PARP (Fig. 5B, bottom right) in the small regressed tumor sections from mice of EM011-treatment group at day 38. In contrast, there was no significant staining in the control tumor sections (Fig. 5B, middle and bottom left). We thus concluded that the regression of tumor xenografts is a result of EM011-induced apoptosis.

EM011 Therapy Does Not Cause Any Histologic Toxicity

The rational approach of treating cancer is targeting of selective differences between a cancer cell and a normal host cell. Unfortunately, many of the available drugs do not discriminate very well between a normal and a neoplastic cell, rather target all rapidly dividing cells such as the gut and spleen. Thus, a range of unwanted toxic effects accompanies their use, which is a clear reflection of their nonselective behavior. Unlike conventional tubulin-binding chemotherapeutics that mess up the microtubule system in extremity, noscapinoids are distinctive, perhaps because they do not alter the steady-state monomer/polymer ratio of tubulin. Thus normal cells, owing to robust cell cycle checkpoint controls, arrest until the drug is cleared out by metabolism/excretion, whereas cancer cells due to mutational lesions in their checkpoint mechanisms do not halt for a longer duration. They rather continue to traverse the cell cycle, thus, accumulating massive DNA amounts that trigger apoptosis owing to genotoxic stress (14). Thus, to investigate if EM011 results in toxicities to normal tissues, we examined tissue sections of the spleen, gut, and liver of tumor-bearing mice by H&E staining (Fig. 5C). Our results showed that EM011 therapy did not cause any detectable pathologic abnormalities in mice, and there was a complete absence of metastatic lesions in these organs.

Taken together, our data provide compelling evidence that EM011 is efficacious in inducing apoptosis and suppressing growth of MRP overexpressing cells. More importantly, EM011 is potently active in regressing tumors that have become resistant to teniposide, a drug actively used for lymphoma management in the clinic. In addition, EM011 therapy is oral and nontoxic, which is a unique edge over currently available chemotherapeutics. Therefore, we believe that EM011 is a promising nontoxic drug candidate with potential for management of hematologic drug-resistant malignancies.

Acknowledgments

Received 5/20/2007; revised 12/1/2007; accepted 1/3/2008.

Grant support: NIH grants CA-095317-01Ax (H.C. Joshi) and 3P20MD000195-05S1 (C. Yates).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 USC. Section 1734 solely to indicate this fact.

We wish to thank Dr. William T. Beck for providing cell lines, and members of the Joshi laboratory for discussions. We thankfully acknowledge Dr. Meenakshi Gupta, pathologist for evaluating animal tissue sections in a blinded manner.

References

12. Ye K, Ke Y, Kushava N, et al. Opium alkaloid noscapine is an antitumor agent that arrests metaphase...
Multidrug Resistance-Associated Protein–Overexpressing Teniposide-Resistant Human Lymphomas Undergo Apoptosis by a Tubulin-Binding Agent

Ritu Aneja, Min Liu, Clayton Yates, et al.

Updated version Access the most recent version of this article at: http://cancerres.aacrjournals.org/content/68/5/1495

Cited articles This article cites 44 articles, 20 of which you can access for free at: http://cancerres.aacrjournals.org/content/68/5/1495.full.html#ref-list-1

Citing articles This article has been cited by 5 HighWire-hosted articles. Access the articles at: http://cancerres.aacrjournals.org/content/68/5/1495.full.html#related-urls

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.